Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 15(727): eade4619, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38117901

RESUMO

Peripheral neurons terminate at the surface of tendons partly to relay nociceptive pain signals; however, the role of peripheral nerves in tendon injury and repair remains unclear. Here, we show that after Achilles tendon injury in mice, there is new nerve growth near tendon cells that express nerve growth factor (NGF). Conditional deletion of the Ngf gene in either myeloid or mesenchymal mouse cells limited both innervation and tendon repair. Similarly, inhibition of the NGF receptor tropomyosin receptor kinase A (TrkA) abrogated tendon healing in mouse tendon injury. Sural nerve transection blocked the postinjury increase in tendon sensory innervation and the expansion of tendon sheath progenitor cells (TSPCs) expressing tubulin polymerization promoting protein family member 3. Single cell and spatial transcriptomics revealed that disruption of sensory innervation resulted in dysregulated inflammatory signaling and transforming growth factor-ß (TGFß) signaling in injured mouse tendon. Culture of mouse TSPCs with conditioned medium from dorsal root ganglia neuron further supported a role for neuronal mediators and TGFß signaling in TSPC proliferation. Transcriptomic and histologic analyses of injured human tendon biopsy samples supported a role for innervation and TGFß signaling in human tendon regeneration. Last, treating mice after tendon injury systemically with a small-molecule partial agonist of TrkA increased neurovascular response, TGFß signaling, TSPC expansion, and tendon tissue repair. Although further studies should investigate the potential effects of denervation on mechanical loading of tendon, our results suggest that peripheral innervation is critical for the regenerative response after acute tendon injury.


Assuntos
Fator de Crescimento Neural , Traumatismos dos Tendões , Animais , Humanos , Camundongos , Proliferação de Células , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/farmacologia , Células-Tronco , Tendões/metabolismo , Fator de Crescimento Transformador beta , Receptor trkA/metabolismo
2.
Bone Res ; 11(1): 39, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479686

RESUMO

Heterotopic ossification (HO) is a pathological process resulting in aberrant bone formation and often involves synovial lined tissues. During this process, mesenchymal progenitor cells undergo endochondral ossification. Nonetheless, the specific cell phenotypes and mechanisms driving this process are not well understood, in part due to the high degree of heterogeneity of the progenitor cells involved. Here, using a combination of lineage tracing and single-cell RNA sequencing (scRNA-seq), we investigated the extent to which synovial/tendon sheath progenitor cells contribute to heterotopic bone formation. For this purpose, Tppp3 (tubulin polymerization-promoting protein family member 3)-inducible reporter mice were used in combination with either Scx (Scleraxis) or Pdgfra (platelet derived growth factor receptor alpha) reporter mice. Both tendon injury- and arthroplasty-induced mouse experimental HO models were utilized. ScRNA-seq of tendon-associated traumatic HO suggested that Tppp3 is an early progenitor cell marker for either tendon or osteochondral cells. Upon HO induction, Tppp3 reporter+ cells expanded in number and partially contributed to cartilage and bone formation in either tendon- or joint-associated HO. In double reporter animals, both Pdgfra+Tppp3+ and Pdgfra+Tppp3- progenitor cells gave rise to HO-associated cartilage. Finally, analysis of human samples showed a substantial population of TPPP3-expressing cells overlapping with osteogenic markers in areas of heterotopic bone. Overall, these data demonstrate that synovial/tendon sheath progenitor cells undergo aberrant osteochondral differentiation and contribute to HO after trauma.

3.
Stem Cells ; 41(9): 862-876, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37317792

RESUMO

Numerous intrinsic factors regulate mesenchymal progenitor commitment to a specific cell fate, such as osteogenic or adipogenic lineages. Identification and modulation of novel intrinsic regulatory factors represent an opportunity to harness the regenerative potential of mesenchymal progenitors. In the present study, the transcription factor (TF) ZIC1 was identified to be differentially expressed among adipose compared with skeletal-derived mesenchymal progenitor cells. We observed that ZIC1 overexpression in human mesenchymal progenitors promotes osteogenesis and prevents adipogenesis. ZIC1 knockdown demonstrated the converse effects on cell differentiation. ZIC1 misexpression was associated with altered Hedgehog signaling, and the Hedgehog antagonist cyclopamine reversed the osteo/adipogenic differentiation alterations associated with ZIC1 overexpression. Finally, human mesenchymal progenitor cells with or without ZIC1 overexpression were implanted in an ossicle assay in NOD-SCID gamma mice. ZIC1 overexpression led to significantly increased ossicle formation in comparison to the control, as assessed by radiographic and histologic measures. Together, these data suggest that ZIC1 represents a TF at the center of osteo/adipogenic cell fate determinations-findings that have relevance in the fields of stem cell biology and therapeutic regenerative medicine.


Assuntos
Adipogenia , Células-Tronco Mesenquimais , Animais , Camundongos , Humanos , Adipogenia/genética , Proteínas Hedgehog , Osteogênese/fisiologia , Camundongos Endogâmicos NOD , Camundongos SCID , Diferenciação Celular , Fatores de Transcrição/genética
4.
Biochem Biophys Rep ; 34: 101486, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37234487

RESUMO

Although mesenchymal stem cells (MSCs) can be obtained from various tissues such as bone marrow (BM), umbilical cord blood (UCB) and umbilical cord tissue (UC), the comparative efficacy of each MSC in tendon regeneration is unknown. Therefore, we investigated the efficacy of MSCs isolated from three different sources on tendon regeneration after injury. We evaluated the potential of BM-, UCB- and UC-MSC to differentiate into tendon-like cells in tensioned three-dimensional construct (T-3D) using gene and histological analysis. In animal experiments, full-thickness tendon defect (FTD) was created in supraspinatus of rats, and injected with Saline and BM-, UCB- and UC-MSC. After two and four weeks, histological evaluations were performed. After inducing tenogenic differentiation, the gene expression of scleraxis, mohawk, type I collagen and tenascin-C was upregulated by 3.12-, 5.92-, 6.01- and 1.61-fold respectively and formation of tendon-like matrix was increased 4.22-fold in UC-MSC compared to BM-MSC in T-3D. In animal experiments, the total degeneration score was lower in the UC-MSC group than in BM-MSC group at both weeks. In heterotopic matrix formation, glycosaminoglycan-rich area was reduced in the UC-MSC group, whereas area was larger in the BM-MSC group than in Saline group at four weeks. In conclusion, UC-MSC is superior to other MSCs in differentiating into tendon-like lineage cells and forming a well-organized tendon-like matrix under T-3D conditions. UC-MSC enhances regeneration of FTD in terms of histological properties compared to BM- and UCB-MSC.

5.
J Tissue Eng ; 12: 20417314211059624, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868540

RESUMO

Chronic kidney disease (CKD) is defined as structural and functional abnormalities of the kidney due to inflammation and fibrosis. We investigated the therapeutic effects of exosomes secreted by melatonin-stimulated mesenchymal stem cells (Exocue) on the functional recovery of the kidney in a CKD mouse model. Exocue upregulated gene expression of micro RNAs (miRNAs) associated with anti-inflammatory and anti-fibrotic effects. Exocue-treated groups exhibited low tumor necrosis factor-α and transforming growth factor-ß levels in serum and fibrosis inhibition in kidney tissues mediated through regulation of cell apoptosis and proliferation of fibrosis-related cells. Exocue treatment decreased the gene expression of CKD progression-related miRNAs. Moreover, the CKD severity was alleviated in the Exocue group via upregulation of aquaporin 2 and 5 levels and reduction of blood urea nitrogen and creatinine, resulting in functional recovery of the kidney. In conclusion, Exocue could be a novel therapeutic agent for treating CKD by regulating inflammation and fibrosis.

6.
Biomolecules ; 11(10)2021 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-34680082

RESUMO

Atopic dermatitis (AD) is caused by multiple factors that trigger chronic skin inflammation, including a defective skin barrier, immune cell activation, and microbial exposure. Although melatonin has an excellent biosafety profile and a potential to treat AD, there is limited clinical evidence from controlled trials that support the use of melatonin as an AD treatment. The delivery of melatonin via the transdermal delivery system is also a challenge in designing melatonin-based AD treatments. In this study, we generated melatonin-loaded extracellular vesicle-mimetic nanoparticles (MelaNVs) to improve the transdermal delivery of melatonin and to evaluate their therapeutic potential in AD. The MelaNVs were spherical nanoparticles with an average size of 100 nm, which is the optimal size for the transdermal delivery of drugs. MelaNVs showed anti-inflammatory effects by suppressing the release of TNF-α and ß-hexosaminidase in LPS-treated RAW264.7 cells and compound 48/80-treated RBL-2H3 cells, respectively. MelaNVs showed a superior suppressive effect compared to an equivalent concentration of free melatonin. Treating a 2,4-dinitrofluorobenzene (DNCB)-induced AD-like mouse model with MelaNVs improved AD by suppressing local inflammation, mast cell infiltration, and fibrosis. In addition, MelaNVs effectively suppressed serum IgE levels and regulated serum IFN-γ and IL-4 levels. Taken together, these results suggest that MelaNVs are novel and efficient transdermal delivery systems of melatonin and that MelaNVs can be used as a treatment to improve AD.


Assuntos
Dermatite Atópica/tratamento farmacológico , Vesículas Extracelulares/química , Melatonina/farmacologia , Nanopartículas/química , Administração Tópica , Animais , Biomimética , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/patologia , Dinitroclorobenzeno/toxicidade , Células HEK293 , Humanos , Melatonina/química , Camundongos , Células RAW 264.7
7.
Connect Tissue Res ; 62(5): 586-596, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33401977

RESUMO

AIMS: Corticosteroid injections are used to treat shoulder pain. Platelet-rich plasma (PRP) is known to have anti-inflammatory and anabolic effects, as well as cytoprotective effects against corticosteroids. Thus, this study was to investigate the effects of co-treatment of corticosteroid and PRP on anti-inflammatory and matrix homeostasis of synoviocytes in IL-1ß-induced inflammatory conditions. MATERIALS AND METHODS: Synoviocytes were cultured with 1 ng/mL IL-1ß, 1 µM dexamethasone, and 10% (vol/vol) Platelet-poor plasma (PPP), PRP200, PRP1000, and PRP4000 X 103/µL. Gene expressions of pro-inflammatory and anti-inflammatory cytokines, degradative enzymes, and their inhibitors were evaluated and protein synthesis of degradative enzymes and their inhibitors were also examined. RESULTS: Corticosteroid modulated anti-inflammatory and pro-inflammatory cytokines, and subsequent PRP treatment did not interfere with the effect of a corticosteroid and modulated the gene expressions of cytokines such as TNF-α and IL-4, which were not regulated by the corticosteroid alone. Gene expressions and protein expressions of degradative enzymes and their inhibitors were suppressed by corticosteroid. Additional PRPs did not alter the gene expression and protein regulated by the corticosteroid and inhibited the gene expression of ADAMTS-5 and protein synthesis of MMP-9 and ADAMTS-5, which were not modulated by the corticosteroid alone. CONCLUSION: Corticosteroid regulated the inflammation and synovial homeostasis. When PRP and the corticosteroid were used together, it exhibited synergistic effects on synoviocytes by regulating the parts that were not controlled by corticosteroid alone while not interfering with the effects of the corticosteroid in an inflammatory condition.


Assuntos
Sinoviócitos , Corticosteroides/farmacologia , Anti-Inflamatórios/farmacologia , Células Cultivadas , Citocinas , Plasma Rico em Plaquetas
8.
PLoS One ; 15(11): e0235239, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33166292

RESUMO

Although rotator cuff disease is a common cause of shoulder pain, there is still no treatment method that could halt or reveres its development and progression. The purpose of this study was to investigate the efficacy of umbilical cord-derived mesenchymal stem cells (UC MSCs) on the regeneration of a full-thickness rotator cuff defect (FTD) in a rat model. We injected either UC MSCs or saline to the FTD and investigated macroscopic, histological and biomechanical results and cell trafficking. Treatment with UC MSCs improved macroscopic appearance in terms of tendon thickness at two weeks, and inflammation, defect size, swelling/redness and connection surrounding tissue and slidability at four weeks compared to the saline group. Histologically, UC MSCs induced the tendon matrix formation recovering collagen organization, nuclear aspect ratio and orientation angle of fibroblast as well as suppressing cartilage-related glycosaminoglycan compared to saline group at four weeks. The UC MSCs group also improved ultimate failure load by 25.0% and 19.0% and ultimate stress by 27.3% and 26.8% at two and four weeks compared to saline group. UC MSCs labeled with PKH26 exhibited 5.3% survival at four weeks compared to three hours after injection. This study demonstrated that UC MSCs regenerated the FTD with tendon tissue similar properties to the normal tendon in terms of macroscopic, histological and biomechanical characteristics in a rat model.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Regeneração , Lesões do Manguito Rotador/terapia , Traumatismos dos Tendões/terapia , Animais , Fenômenos Biomecânicos , Masculino , Ratos , Ratos Sprague-Dawley , Lesões do Manguito Rotador/patologia , Traumatismos dos Tendões/patologia
9.
Stem Cell Res Ther ; 11(1): 387, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32894193

RESUMO

BACKGROUND: It is difficult to immediately use mesenchymal stem cells (MSCs) for the patient with rotator cuff disease because isolation and culture time are required. Thus, the MSCs would be prepared in advanced in cryopreserved condition for an "off-the-shelf" usage in clinic. This study investigated the efficacy of freshly thawed MSCs on the regeneration of a full-thickness tendon defect (FTD) of rotator cuff tendon in a rat model. METHODS: We evaluated morphology, viability, and proliferation of cultured umbilical cord-derived MSCs (C-UC MSCs) and freshly thawed umbilical cord-derived MSCs (T-UC MSCs) at passage 10 in vitro. In animal experiments, we created a FTD in the supraspinatus of rats and injected the injured tendon with saline, cryopreserved agent (CPA; control), C-UC MSCs, and T-UC MSCs, respectively. Two and 4 weeks later, macroscopic, histological, biomechanical, and cell trafficking were evaluated. T test and ANOVA were used with SPSS. Differences with p < .05 were considered statistically significant. RESULTS: T-UC MSCs had fibroblast-like morphology and showed greater than 97% viability and stable proliferation comparable to the C-UC MSCs at passage 10. In animal experiments, compared with the control group, the macroscopic appearance of the T-UC MSCs was more recovered at 2 and 4 weeks such as inflammation, defect size, neighboring tendon, swelling/redness, the connecting surrounding tissue and slidability. Histologically, the nuclear aspect ratio, orientation angle of fibroblasts, collagen organization, and fiber coherence were improved by 33.33%, 42.75%, 1.86-fold, and 1.99-fold at 4 weeks, and GAG-rich area decreased by 88.13% and 94.70% at 2 and 4 weeks respectively. Further, the T-UC MSCs showed enhanced ultimate failure load by 1.55- and 1.25-fold compared with the control group at both 2 and 4 weeks. All the improved values of T-UC MSCs were comparable to those of C-UC MSCs. Moreover, T-UC MSCs remained 8.77% at 4 weeks after injury, and there was no significant difference between C-UC MSCs and T-UC MSCs. CONCLUSIONS: The morphology, viability, and proliferation of T-UC MSCs were comparable to those of C-UC MSCs. Treatment with T-UC MSCs could induce tendon regeneration of FTD at the macroscopic, histological, and biomechanical levels comparable to treatment with C-UC MSCs.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Lesões do Manguito Rotador , Animais , Humanos , Ratos , Manguito Rotador , Tendões , Cordão Umbilical
10.
Acta Biomater ; 114: 104-116, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32682057

RESUMO

Regeneration of the gradient structure of the tendon-to-bone interface (TBI) is a crucial goal after rotator cuff repair. The purpose of this study was to investigate the efficacy of a biomimetic hydroxyapatite-gradient scaffold (HA-G scaffold) isolated from adipose tissue (AD) with umbilical cord derived mesenchymal stem cells (UC MSCs) on the regeneration of the structure of the TBI by analyzing the histological and biomechanical changes in a rat repair model. As a result, the HA-G scaffold had progressively increased numbers of hydroxyapatite (HA) particles from the tendon to the bone phase. After seeding UC MSCs to the scaffold, specific matrices, such as collagen, glycoaminoglycan, and calcium, were synthesized with respect to the HA density. In a rat repair model, compared to the repair group, the UC MSCs seeded HA-G scaffold group had improved collagen organization and cartilage formation by 52% at 8 weeks and 262.96% at 4 weeks respectively. Moreover, ultimate failure load also increased by 30.71% at 4 weeks in the UC MSCs seeded HA-G scaffold group compared to the repair group. Especially, the improved values were comparable to values in normal tissue. This study demonstrated that HA-G scaffold isolated from AD induced UC MSCs to form tendon, cartilage and bone matrices similar to the TBI structure according to the HA density. Furthermore, UC MSC-seeded HA-G scaffold regenerated the TBI of the rotator cuff in a rat repair model in terms of histological and biomechanical properties similar to the normal TBI. Statement of Significance We found specific extracellular matrix (ECM) formation in the biomimetic-hydroxyapatite-gradient-scaffold (HA-G-scaffold) in vitro as well as improved histological and biomechanical results of repaired rotator cuff after the scaffold implantation in a rat model. This study has four strengths; An ECM scaffold derived from human adipose tissue; only one-layer used for a gradient scaffold not a multilayer used to mimic the unique structure of the gradient tendon-to-bone-interface (TBI) of the rotator cuff; UC-MSCs as a new cell source for TBI regeneration; and the UC-MSCs synthesized specific matrices with respect to the HA density without any other stimuli. This study suggested that the UC-MSC seeded HA-G-scaffold could be used as a promising strategy for the regeneration of rotator cuff tears.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Lesões do Manguito Rotador , Tecido Adiposo , Animais , Matriz Extracelular , Ratos , Manguito Rotador , Tendões , Alicerces Teciduais , Cordão Umbilical
11.
Cell Transplant ; 25(3): 593-607, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26407027

RESUMO

Neuropathic pain following spinal cord injury (SCI) is a devastating disease characterized by spontaneous pain such as hyperalgesia and allodynia. In this study, we investigated the therapeutic potential of ESC-derived spinal GABAergic neurons to treat neuropathic pain in a SCI rat model. Mouse embryonic stem cell-derived neural precursor cells (mESC-NPCs) were cultured in media supplemented with sonic hedgehog (SHH) and retinoic acid (RA) and efficiently differentiated into GABAergic neurons. Interestingly, low doses of SHH and RA induced MGE-like progenitors, which expressed low levels of DARPP32 and Nkx2.1 and high levels of Irx3 and Pax6. These cells subsequently generated the majority of the DARPP32(-) GABAergic neurons after in vitro differentiation. The spinal mESC-NPCs were intrathecally transplanted into the lesion area of the spinal cord around T10-T11 at 21 days after SCI. The engrafted spinal GABAergic neurons remarkably increased both the paw withdrawal threshold (PWT) below the level of the lesion and the vocalization threshold (VT) to the level of the lesion (T12, T11, and T10 vertebrae), which indicates attenuation of chronic neuropathic pain by the spinal GABAergic neurons. The transplanted cells were positive for GABA antibody staining in the injured region, and cells migrated to the injured spinal site and survived for more than 7 weeks in L4-L5. The mESC-NPC-derived spinal GABAergic neurons dramatically attenuated the chronic neuropathic pain following SCI, suggesting that the spinal GABAergic mESC-NPCs cultured with low doses of SHH and RA could be alternative cell sources for treatment of SCI neuropathic pain by stem cell-based therapies.


Assuntos
Células-Tronco Embrionárias/citologia , Neurônios GABAérgicos/transplante , Células-Tronco Neurais/transplante , Neuralgia/etiologia , Neuralgia/terapia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/terapia , Animais , Linhagem Celular , Neurônios GABAérgicos/citologia , Masculino , Camundongos , Células-Tronco Neurais/citologia , Neuralgia/patologia , Neurogênese , Limiar da Dor , Ratos Sprague-Dawley , Medula Espinal/patologia , Traumatismos da Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...